Edit Distance-based Pattern Support
Assessment of Orchestration Languages

Jorg Lenhard, Andreas Schonberger, and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg, Germany
{joerg.lenhard, andreas.schoenberger, guido.wirtz}Quni-bamberg.de

Abstract. Orchestration languages are of paramount importance when
implementing business processes based on services. Several languages
for specifying Web Services-based orchestrations are available today.
Examples are the Web Services Business Process Execution Language
or Windows Workflow. Patterns for process-aware information systems
have frequently been used to assess such languages. Various studies
discuss the degree of support such languages provide for certain sets of
patterns. However, the traditional trivalent support measure is limited in
terms of granularity and selectivity. This paper proposes an edit distance
complexity measure that allows to overcome these issues. The applicability
of this measure is demonstrated by an analysis of several orchestration
languages using four different pattern catalogs.

Keywords: SOA, Pattern, Edit Distance, Orchestration, BPEL, WF

1 Introduction

Today, service-oriented architectures (SOAs) form the primary means to create
flexible, interoperable and cooperative information systems. In SOAs, business
processes are implemented as composite services [15]. Such composite services
combine calls to existing services by defining control- and data-flow dependencies
between the different service invocations. Orchestrations have been introduced
in [16] as executable process definitions that use Web Services as primitives for
interactions.

Several languages for implementing Web Services-based orchestrations are
available, such as the Web Services Business Process Execution Language (BPEL)
[13] or Windows Workflow (WF) [3]. Traditional comparisons of such languages
predominantly use patterns to assess their expressiveness. Workflow control-flow
patterns [23] and service interaction patterns |2] are of outstanding importance.
The more patterns a language supports and the higher the degree of support it
provides is, the more expressive it is.

The traditional pattern support measure offers three possible values, i.e.,
direct (+), partial (+/-) or no direct support (-) for a pattern [23| p. 50]. These
values are calculated based on the number of language constructs (e.g. decision
or loop constructs) needed for implementing a pattern. The constructs needed
therefore are used to represent how directly a pattern is supported. If a pattern

can be implemented using a single construct, a solution provides direct support.
If a combination of two constructs needs to be used, the result is partial support.
In all other cases, there is no direct support. This support measure has been
used in various studies [1}[5(64|8}/17H20}23-25,27]. Unfortunately, it comes with a
number of problems, so that the calculation of the degree of support provided
even is left out in some studies (cf. [14]):

1. Although discussed by some authors, the support measure in its present
form does not reveal whether a pattern can be implemented in a language at
all. Solutions using more than two constructs may exist. However, these are
rated as offering no direct support. This low level of granularity results in a
limited degree of selectivity provided by the support measure. The notion
of no direct support can easily be misinterpreted to believe that a pattern
cannot be implemented in a language at all.

2. Usually, the degree of support is determined by a conceptual analysis of the
set of core constructs of a language specification. Due to this, the complexity
of pattern solutions and the effort required by the implementer of a pattern is
not truly captured. An executable implementation of a pattern might require
the use of more constructs and other aspects that do not belong to this
set, such as variable or correlation set definitions, which an analysis of a
specification does not reveal.

3. Only the use, but not the configuration of constructs is considered in the
traditional support measure. This can lead to an inaccurate classification.
Assume the default configuration of a construct provides a complete solution
to a pattern in one language. In another language, also a single construct is
sufficient, but this construct must be configured in several non-trivial steps.
Clearly, the first language supports the pattern more directly and the solution
is less costly. Nevertheless, both languages achieve the rating of direct support.

The contribution of this paper is the definition of a more accurate support measure
that offers higher granularity and selectivity. It hence contributes to alleviating
the above deficiencies. This measure is based on the edit distance concept [11]
and operationalized for pattern-based analysis of orchestration languages. The
basic idea is to count the number of steps taken by the user of a language when
implementing a pattern, as this is more suitable to capture the effort required by
the user. The implementation steps we consider are semantically meaningful units
of change, specific for orchestration languages. The proposed measure allows to
determine the cost associated with the implementation of a pattern in a certain
language and unveils whether or not a pattern can be implemented at all.

To verify the applicability of this support measure, we furthermore provide
an extensive analysis of the orchestration languages BPEL 2.0 [13], its implemen-
tation in the OpenESB BPEL Service Engine (Sun BPEL), and WF in revision
4 [3]. We analyze these languages for their support of four pattern catalogs, the
workflow control-flow patterns [19,23], the service interaction patterns |2], the
time patterns [§] and the patterns for changes in predefined regions [24]. These
catalogs have been used in various studies, e.g. [4}/6],/12,/14}/25//27], and describe
aspects that are of paramount importance for realistic processes. In total, they

consist of 70 different patterns. We calculate the degree of support with our
proposed support measure, the traditional trivalent measure, and compare the
results. Although partly based on preceding analyses |2}/19}/25,27], the assessment
of the support provided by the languages in the specified revisions for these
pattern catalogs is new.

This paper builds upon previous work on assessing pattern support. In
[10], we have introduced a uniform method for checking whether a pattern
implementation is valid and we have put forward the idea of using an edit distance-
based support measure. The approach for assessing the validity of candidate
pattern implementations has been reused for this study and is not further
discussed. Concerning the edit distance-based support measure, we provide an
operationalization for orchestration languages that enables comparability across
orchestration languages and we provide an extensive evaluation of our measure in
terms of selectivity and applicability by assessing the above four pattern catalogs.

The paper is structured as follows: In the following section we review related
work and discuss relevant pattern catalogs and pattern-based analyses. In Sect.
we define and demonstrate the use of the edit distance support measure. There-
after, we present the results of the analysis and discuss their implications. Finally,
Sect. [] concludes the paper with remarks on future work.

2 Related Work

Research on applying patterns for the design and implementation of SOAs and
process-aware information systems is very popular, e.g. [12,28]. However, the
work here focuses on applying patterns to measure the effort for creating process
models, in particular orchestration models. Therefore, we first identify relevant
pattern catalogs and orchestration languages. Then, we discuss existing studies
that evaluate the expressiveness of process languages using patterns and finally
focus on metrics for measuring pattern support.

There are numerous approaches that present pattern catalogs for assessing
process-aware information systems. The workflow patterns initiative started this
movement with the control-flow patterns [19,23]. They also cover data patterns
(18], resource patterns [17] and exception handling patterns [20]. The first pattern
catalog that addresses specific requirements of service-oriented processes with
a number of important interaction scenarios is the service interaction patterns
catalog [2]. Similarly, [22] characterizes business functions that are frequently
needed in processes as activity patterns. |1] defines correlation mechanisms that
are used in service interactions in the form of correlation patterns. The means
for creating process instances are covered by process instantiation patterns [5).
Constructs that allow for flexibility of processes in the face of changes to their
structure are captured as change patterns in [24]. Common time constraint
mechanisms are proposed in [§] in the form of time patterns.

In the area of orchestration languages, BPEL [13], currently available in
revision 2.0, is a widely accepted standard. It is a mainly block-structured
language specification that has been implemented by several vendors. As is

common practice in pattern-based analyses [17H19}/23|, an implementation of this
language needs to be treated as a separate language. One such implementation
is the OpenESB BPEL Service Engineﬂ WF [3] is a proprietary orchestration
language maintained by Microsoft as a part of the .NET framework. Since April
2010, it is available in revision 4. Compared to previous versions, it has undergone
significant changes. WF contains block-structured and graph-oriented elements.

Almost all of the studies that introduce pattern catalogs also analyze the
degree of support that varying languages and systems provide for the patterns in
focus [1}2L}5,8}/17-20}/23}[24]. The support provided by BPEL 1.1 and in some
cases also by one of its implementations is discussed for the control-flow, data,
resource, service interaction, and correlation patterns [24|17H20L[23]. The process
instantiation patterns and correlation patterns [1,/5] are evaluated for BPEL
2.0. Further pattern-based analyses of BPEL 1.1 and comparisons to other Web
Services composition languages can be found in [6,25]. For WF, only a single
study that assesses its support for control-flow patterns in its revision 3.5 can be
found so far [27]. All these studies use the traditional support measure or do not
qualify the degree of support at all.

In this paper, we evaluate the complexity of a process model through the
computation of a distance metric. Other attempts for measuring this complexity
focus on the structure of the execution sequences produced by a process |4] or
count the number of and, or, and zor nodes in its graph [21]. The edit distance,
or Levenshtein distance [11], originally measures the distance between strings by
counting the minimal amount of insertions, substitutions or deletions of characters
that are needed to transform one string into the other. Here, we address process
models instead of strings. The graph edit distance [7] has been put forward for
this use case. It computes the distance between two process models using the
amount of insertions, deletions and substitutions of nodes and control-flow edges
in the process graph. Such edit distances have various applications in the area of
service-oriented systems, for example in service discovery of composite services
[26]. There, they are used to match a set of processes to a given query. Here
however, our aim is to accurately classify the cost of changing process models.
We argue that the graph edit distance is too abstract to be used for the problem
at hand. It does not consider the configuration of nodes or edges and does not
consider crucial characteristics that are typical for orchestration languages, such
as variables or correlation sets. Consequently, its application would bear the
same issues as the traditional support measure. Therefore, we specialize the set
of underlying edit operations to capture the specifics of orchestration languages.
A specialized set of edit operations allows for a more accurate cost estimation,
than a mere comparison of nodes and edges would.

3 Edit Distance Support Measure

Our support measure is based on the idea to measure the degree of support
provided by a language through the computation of the distance between an

! Please refer to http://wiki.open-esb.java.net/Wiki.jsp?page=BPELSE.

http://wiki.open-esb.java.net/Wiki.jsp?page=BPELSE

executable process stub without specific functionality and a process implementing
a given pattern |10]. A process stub is a minimal process definition, a process
model that forms the typical starting point of any realistic process. This process
stub can be extended with the language constructs that are needed to implement
exactly a single pattern. The distance between these two process models, the
process stub and the pattern implementation, computed in a metrical scaling,
provides a notion of complexity for the implementation of a pattern in a language.
It is of importance that the process stub and the computation of the distance
metric are similar for different languages. Also, the languages have to reside on
a similar level of abstraction, which is the case for the languages in focus here.
Omitting this requirement would not allow for meaningful results when directly
comparing different languages.

Similarity between the process stubs of different languages can not be based on
syntactical similarity because the languages have a different syntax. However, the
process stubs can be implemented according to the same abstract scheme which
will be presented in the next section, along with code samplesﬂ for the process
stubs in BPEL 2.0, Sun BPEL, and WF 4. In the same fashion, the computation
of the distance between the process stub and a pattern implementation using an
edit distance, must be based on the same set of edit operations, even for different
languages. Therefore, we go on with defining an abstract set of edit operations
for orchestration languages and describe the mapping of these edit operations to
the specifics of the languages in focus.

3.1 Common Schema for Process Stubs

To obtain distance values that are comparable for multiple languages, it is
necessary to have a common basis, i.e., to use a semantically equivalent process
stub. In this study, we examine multiple orchestration languages. Therefore, also
the process stub ought to be applicable to orchestration languages in general.
As a minimal feature of the executability of an orchestration model, it should
provide the ability to create new process instances. In an orchestration, this
is typically done using a single event trigger |5] such as an incoming message.
Activities that process incoming messages, often called receive activities, are most
convenient for this purpose. The main aim of the process stub is to extend it with
the implementation of pattern. This can be achieved with a sequence activity.
For the reason of extensibility, it is beneficial to be able to direct some input
to a process instance. The initial message that triggers the creation of a new
process instance is sufficient for this. Normally, this requires the definition of a
variable in the process model, and a mapping from the input message to this
variable. In BPEIE| there are receive and sequence activities for these purposes.

2 All code samples in this paper are limited to the most crucial aspects that are
needed for understanding. Certain features, such as XML namespaces, are omitted
completely.

3 For the sake of brevity, we will not discuss the specifics of Sun BPEL separately
from BPEL. Naturally, the languages are similar to a large extent. In cases where
differences exist, we will make this explicitly clear.

To have input data available for a process instance, a variable definition and its
reference in the receive activity are needed. Finally, also the WSDL interface
for the BPEL process needs to be imported and used in a myRole partnerLink.
List. |1) (taken from [10]) outlines such a process stub in BPEL 2.0.

Listing 1. Process stub for BPEL 2.0 and Sun BPEL

<process>
<import location="ProcessInterface.wsdl” />
<partnerLinks>
<partnerlLink name="MyPartnerLink” myRole="patternRole” />
</partnerLinks>
<variables>
<variable name="StartProcessInput” messageType="int”/>
</variables>
<sequence>
<receive createlnstance="yes” variable="StartProcessInput”
partnerLink="MyPartnerLink” operation="StartProcess”/>
<!I—— Pattern Implementation—>
</sequence>
</process>

In WF, the process stub looks very similar. An orchestration can be implemented
as a workflow service and Receive and Sequence activities with the same seman-
tics as in BPEL are available. Variables are scoped differently in WF and the
definition of the service interface is not needed, but is inferred by the workflow
engine from the messaging activities in the workflow. List. [2] outlines the process
stub for WF.

Listing 2. Process stub for WF 4

<WorkflowService>
<Sequence>
<Sequence .Variables>
<Variable Name="InstancelD” TypeArguments="Int327"/>
</Sequence.Variables>
<Receive CanCreatelnstance="True” OperationName="StartProcess”>
<ReceiveParametersContent>
<OutArgument Key="InputData”>[InstanceID]|</0OutArgument>
</ReceiveParametersContent>
</Receive>
<!—— Pattern Implementation—:>
</Sequence>
</WorkflowService>

These process stubs are now enriched with the implementation of a particular
pattern. The distance between a process stub and the pattern implementation is
used to determine the degree of support provided for a pattern by the languages.
It reflects the effort needed by the implementer of a pattern and the complexity
of the implementation.

3.2 Edit Operations

The idea for calculating the edit distance here is to count all meaningful imple-
mentation steps that are needed by a user to achieve the functionality required
by a pattern definition. Therefore, all relevant changes in a process model should

be covered and not just changes to nodes and edges in the process graph. In
the following, we present a set of edit operations for orchestration languages
and describe how they are represented in BPEL 2.0 and WF 4. The operations
represent self-contained semantical units that stand for atomic implementation
steps from a programmer perspective. As an example, adding a variable to a
process model and setting its name and type, is considered as a single implemen-
tation step. These steps are independent of the serialization format or graphical
representation of a language. This means that, although they might require
several changes to the code of a process model or several actions in a graphical
editor, they capture a single semantic change of a feature of the process model.
Changes to process models can be facilitated by using a sophisticated develop-
ment environment when implementing a pattern. But in taking into account
features such as auto-completion or the macros of an editor, an analysis would
no longer evaluate a language, but rather an environment for the language. As
this is not our intention, we abstract from any tooling available when calculating
the distance values.

The set of edit operations has been identified as follows: Starting with a list
of candidate operations, the relevance of an operation was determined by the fact
that it was needed to implement the behaviour required by a pattern. During the
implementation of certain patterns it became obvious that further edit operations
had to be defined, especially for messaging activities, and the list was extended.
This procedure is similar to the method used by several authors for extrapolating
a set of patterns from a set of real-world process models or the capabilities of
several workflow systems [2}[8[17}/18,/22H24]. No other edit operations apart from
the operations described were necessary and it was possible, using this set of
operations, to calculate selective and meaningful support values (cf. Sect. . More
than 150 process modelaEI were developed and these models serve as empirical
evidence for the relevance of the edit operations from a programmer perspective.
Each of the following operations adds one point to the edit distance of a solution
to a pattern.

Insert Activity: The insertion or substitution of an activity and the setting of
the activity name.

Any BPEL 2.0 activity and any WF 4 activity is covered by this operation.

Further configuration of an inserted activity is not included. In a block-

structured process model, activities are necessarily nested. There, inserting

an activity also includes the modification of a composite activity (e.g. inserting

a child activity). Therefore, the modification of the composite activity is

also included in the insertion. For example, inserting an activity into an

onMessage activity in BPEL 2.0 also modifies it.
Insert Edge: The insertion of a control-flow edge and the setting of its name.

This operation is generally only available in a graph-oriented model. In BPEL

4 As discussed, we considered a total of 70 patterns. Because we analyzed three
languages, there are up to three process models per pattern. Moreover, several
patterns, especially the service interaction patterns [2], require more than one process
model for a valid implementation.

2.0, edges are represented by links in a flow activity. In WF 4, edges are
represented by FlowSteps in a Flowchart activity. An insertion of an edge
in a graph also includes the setting of its target and source. All further
configuration, such as the setting of a condition for the activation of an edge
is not included in its insertion. For all other consideration, edges can be
treated just as activities.

Insert Auxiliary Construct: The insertion of a process element, apart from
nodes and edges.
Apart from activities and edges, languages may use a variety of auxiliary
constructs that can be defined in a process model and be used by the
activities of a process. Such elements are, for example, variables, correlations,
or references to partners involved in the process. The insertion of such an
element involves its initial configuration, such as the setting of its name
and type. In BPEL 2.0, such constructs are variables, correlationSets,
and partnerLinks. For a variable, the name and type must be fixed. For
a correlationSet, the name and properties must be specified and for a
partnerLink, the name, partnerLinkType, and role must be declared. In
WF 4, the only additional process elements are Variables. Correlations
can be defined using variables of a specific type, CorrelationHandle, and
references to partners are not defined explicitly, but are contained in the
configuration of messaging activities. In WF 4, the insertion of a Variable
involves the setting of its type, name, and optionally a default value.

Configure Messaging Properties: The setting of the messaging properties in
a messaging activity.
Messaging activities require the configuration of several properties, all related
to the interface of the service to which they correspond. Typically, this is the
setting of a service name and an operation name. The operation name marks
an operation provided by the service which is identified by the service name.
As they are logically related, these configurations are captured in a single edit
operation. In BPEL 2.0, the configuration of the messaging properties of an
activity involves the setting of the partnerLink, portType and operation.
In WF 4, it corresponds to the setting of the ServiceContractName and the
OperationName.

Configure Addresses: The setting of an endpoint address.
For an outbound messaging activity, apart from the messaging properties
that relate to the interface of the service, also the address of a concrete service
instance needs to be set. Otherwise, a messaging activity would not be able
to direct a message to it. In BPEL 2.0, this is not necessarily needed, as the
address of a service may be inferred from the partnerLink used in the activity
which needs to be set as part of the messaging properties. This is not the
case for WF 4, as it does not make use of an explicit predefined specification
of the partners a process interacts with. Here, the relevant addresses need
to be set separately for each messaging activity. Setting addresses can be
done in several ways, such as via an Endpoint element and the setting of its
AddressUri and the Binding to be used.

Configure Correlations: The configuration of message correlation.
In general, the configuration of message correlation requires a mapping from
the parameters available to an activity to a predefined correlation variable.
In BPEL 2.0, this operation involves the definition of a correlations and a
correlation element, the setting of its name, and potentially whether the
correlation set should be initiated. In WF 4, a CorrelationHandle needs to
be referenced and a query that determines the elements of the parameters of
the activity that identify the correlation needs to be specified.

Configure Parameters: The setting of the input or output parameters of mes-
saging activities.
In BPEL 2.0, this implies referencing a predefined variable. If the param-
eters capture an outbound message, concrete data has to be assigned to
this variable in a separate activity in advance to its use as a messaging
parameter. The insertion of the activity that performs this assignment and
its configuration is not covered by this edit operation. In WF 4 it implies the
definition of a parameter and the mapping of the parameter to a predefined
Variable using an expression.

Configure Expression: The setting of an attribute value of an activity, edge,
or auziliary construct to an expression.
Several attributes of process elements may require expressions as values.
Examples are logical expressions used in the termination condition of a
looping activity. The construction of such an expression may require several
steps and may involve the use of several operators in a dedicated expression
language (which is XPath 1.0 for BPEL 2.0 and Visual Basic for WF 4). The
construction of an expression is rated as a single edit operation.

Assignment: The setting of the content of an assign activity.
The assignment of a value to a variable involves the specification of the
variable name and the expression that produces the value which is assigned.
While WF 4 allows for single assignments in an Assign activity only, BPEL
2.0 allows for multiple ones using multiple copy elements.

Change Configuration: The change of any default value of an activity, edge
or auziliary construct to another value.
All other changes of the configuration of the elements of a process can be
represented by this operation. In BPEL 2.0 or WF 4, this could for example
be the change of an attribute value or the setting of a child element of an
activity. Several activities capture their configuration in child elements. An
example is an onAlarm in BPEL 2.0 where the configuration of the wait
condition is fixed in a for or until element.

The goal of the edit operations chosen is to measure the effort of implementing a
pattern from a programmer perspective. The granularity of this set of operations
essentially is a design choice and it would be an option to decrease or increase it.
For instance, rating the insertion of an activity and its complete configuration as
a single operation decreases the granularity, while counting each modification of
an attribute of a construct increases it. Although we did not perform a complete
analysis, we calculated the distance values for a subset of the process models with

these two modifications and observed the effect this had on the selectivity of the
measure and its ability to characterize the complexity of the process models. It
turned out that in neither case, the ability of the measure to discriminate between
the languages (cf. Sect. [4) differed strongly. The problem with the first approach
is that it assigns similar distance values to the implementations of control-flow
and service interaction patterns, in spite of the fact that the latter describe
more complicated scenarios. This is the case, because even complex messaging
activities are as costly as more simple activities. As an example, a sequence of
two assign activities would have the same distance value as a sequence of a
send and a receive activity, although the latter two are more complicated to
configure. In the second approach, activities that are rather simple but needed
frequently and require extensive configuration tend to hide the complexity of
other activities where the setting of attribute values corresponds to important
design decisions. Examples are assign activities which require the specification
of sources, targets, and possibly expressions or type specifications, and easily
outweigh the configuration of a looping activity to execute in parallel. To sum
up, the set of edit operations presented here provides, in our point of view,
an acceptable trade off between the selectivity of the measure and its ability
to assess the complexity of a pattern. An empirical study is needed to assess
whether the complexity values calculated with the measure really correspond to
the impression of human implementers.

From a theoretical point of view, edit distances that do not use the same
weights for insertion and deletion operations are quasi-metrics |29, p. 12], as
they do not satisfy the property of symmetry. Here, we assign higher costs to
insertions, as we specify a number of fine-grained insertion operations. Deletions
can only be achieved indirectly through substitution. The upper bound of the
computation complexity of the distance value of a process model to a process
stub is linear to the number of activities and auxiliary constructs used, multiplied
with the maximum number of configuration options available for an activity.

3.3 Calculation Example

Next, we describe an implementation of the Racing Incoming Messages pattern
[2] and present a code sample for the executable process in WF 4. This pattern
describes a scenario where a party awaits one out of a set of messages. The
messages may be of different structure, originate from different parties and be
processed in a different manner, depending on their type. This aspect is well
understood in all of the languages in focus here, although the solutions differ
slightly. The implementation presented is motivated by the solution to the pattern
in BPEL 1.1 described in [2].

The implementation in WF 4 builds upon the Pick activity. This activity
contains multiple PickBranch activities, one for each of the messages that can be
received. A minimal realization of the pattern contains two alternative messages.
Each PickBranch activity contains a Trigger. Any WF activity can serve as
Trigger and as soon as the Trigger completes, the according body is executed.
When a Trigger completes, all other PickBranches are canceled.

Listing 3. Racing Incoming Messages pattern in WF

<WorkflowService>
<Sequence>
<Pick>
<PickBranch>
<PickBranch.Trigger>
<Receive ServiceContractName="RacinglncomingMessages”
OperationName="ReceiveMessageA” CanCreatelnstance="True”/>
</PickBranch.Trigger>
<!—— Process MessageA —>
</PickBranch>
<PickBranch>
<PickBranch.Trigger>
<Receive ServiceContractName="RacinglncomingMessages”
OperationName="ReceiveMessageB” CanCreatelnstance="True”/>
</PickBranch.Trigger>
<!—— Process MessageB —>
</PickBranch>
</Pick>
</Sequence>
</WorkflowService>

This structure is outlined in List. [3] The following edit operations add to the edit

distance of this process compared to the process stub presented in List.

1. Insert Activity: Substitute the Receive activity from the process stub with

the Pick activity.

. Insert Activity: Insert the first PickBranch activity.

3. Insert Activity: Insert the first Receive activity into the Trigger of the
first PickBranch activity.

4. Configure Messaging Properties: To be able to receive messages, the
OperationName and ServiceContractName of the first Receive activity has
to be set.

5. Configure Activity: The Receive activity must be able to create a new
process instance (by setting its CanCreateInstance attribute to true), oth-
erwise the executable process would not be valid.

6. Insert Activity: Insert the second PickBranch activity.

7. Insert Activity: Insert the second Receive activity into the Trigger of the
second PickBranch activity.

8. Configure Messaging Properties: To be able to receive messages, the
OperationName and ServiceContractName of the second Receive activity
has to be set.

9. Configure Activity: Set the CanCreateInstance attribute of the second
Receive activity to true.

In total, this adds up to an edit distance of nine. There are similar process models

in BPEL 2.0 and Sun BPEL, based on the pick activity. BPEL 2.0 scores an edit

distance of eight, and Sun BPEL of ten (cf. Table [2). The edit distance allows
to see that there are subtle differences in the degree of support provided by the
languages. Things are different, when using the traditional trivalent measure.

There, the solution achieves direct support, as there is a single essential activity

(the Pick) implementing the pattern. This valuation could be questioned, as there

is undoubtedly more than one activity involved in the solution. Nevertheless, this

N

valuation corresponds to the assumptions made in other evaluations [2,/6]. The
same applies to the solutions in BPEL 2.0 and Sun BPEL. They also result in
a rating of direct support. So when using the traditional measure, this pattern
reveals no difference in the support provided by WF 4 | BPEL 2.0, or Sun BPEL.

4 Results and Evaluation

In the following sections, we present the results of an assessment of the languages
WF 4, BPEL 2.0, and Sun BPEL for the control-flow patterns [19423], the service
interaction patterns [2], the time patterns |8] and the patterns for changes in
predefined regions |24]. A detailed discussion of all these patterns and the solutions
to them in the respective languages is not possible in the context of this paper.
Therefore, the following sections present the overall results of the analysis and
discuss their implications. We refer the interested reader to a technical report
[9] for a description of every pattern and a discussion of the solutions in each
of the languages. All process models that have been developed are availableﬂ
Our intention when developing the process models was to minimize the edit
distance while providing a valid solution to a pattern. More efficient solutions to
the patterns in terms of computing complexity may be possible.

4.1 Control-flow Patterns

Table [1] outlines the results for the control-flow patterns [19,[23] and compares
them to the results of studies which analyzed preceding versions of BPEL and
WF. The control-flow patterns describe typical structures of the control-flow
perspective of automated processes. Our solutions to the patterns in the newer
language revisions were motivated by preceding studies [19}/25,27], given required
language constructs were still in place in the newer language versions. The results
of preceding studies only present the trivalent support measure.

Table [1| reveals that the edit distance support measure provides a higher
degree of selectivity among the languages than the traditional trivalent measure
does. The number of solutions in both, BPEL 2.0 and WF 4, can be used to
assess the quality of the languages, but also to quantify the degree of selectivity
provided by a support measure. This quantification is based on the number
of solutions where a support measure discriminates between the languages in
relation to the total number of solutions to the same patterns. A value of 1 for
this relation states that a support measure completely discriminates in all cases.
A value of 0 states that a support measure discriminates in no case. For 30 of the
43 patterns here, solutions could be found in WF 4. In BPEL 2.0, 31 patterns
could be implemented. For 29 patterns, solutions could be found in both, WF 4
and BPEL 2.0. Only in six of these cases, the trivalent measure discriminates, so
the degree of selectivity amounts to 6/29 = 0.21. The edit distance discriminates

® The process models can be downloaded at http://www.uni-bamberg.de/pi/orch-
patternl [9] also contains a description on how to execute them.

http://www.uni-bamberg.de/pi/orch-pattern
http://www.uni-bamberg.de/pi/orch-pattern

Table 1. Support of workflow control-flow patterns. If available, the edit distance is
displayed first followed by the trivalent measure in parentheses. A value of ‘-’ for the
edit distance means that no valid solution could be found. As opposed to this, a value
of ‘-’ for the trivalent measure means that either no valid solution could be found or
that all possible valid solutions require the use of more than two constructs.

WF 3.5 WF 4 | BPEL | BPEL Sun

Pattern taken from |27] 1.1 taken| 2.0 BPEL
from [19]

Basic Patterns
WCP-1. Sequence + 2 (+) + 2 (+) 2 (+)
WCP-2. Parallel Split + 3 (+) + 3(+) | 3(+)
WCP-3. Synchronization + 3 (4) + 3 (+) 3 (+)
WCP-4. Exclusive Choice + 4 (+) + 4 (+) 4 (+)
WCP-5. Simple Merge + 4(+) + 4(4+) | 4(4)
Advanced Branching and Synchronization Patterns
WCP-6. Multi-Choice + 7 (+/-) + T(+/)| 7 (+/-)
WCP-7. Structured Synchronizing Merge + 7(+/-) + 7T(+/-) |7 (+/-)
WCP-8. Multi-Merge - - (=) - - (=) - (=)
WCP-9. Structured Discriminator +/- 9 (+/-) - 10 (-) 10 (-)
WCP-28. Blocking Discriminator - - (-) - - (=) - (=)
WCP-29. Cancelling Discriminator + 9 (+) - 10 (-) 10 (-)
WCP-30. Structured Partial Join +/- 12 (+/-) - 31 () 31 ()
WCP-31. Blocking Partial Join - - (=) - - (=) - (=)
WCP-32. Cancelling Partial Join + 12 (+) - 31 (-) 31 (-)
WCP-33. Generalized AND-Join - - (-) - - (=) - (=)
WCP-37. Acyclic Synchronizing Merge +/- - (-) + 11 (+) - (=)
WCP-38. General Synchronizing Merge - - (=) - - (=) - (=)
WCP-41. Thread Merge - - (=) +/- - (=) - (=)
WCP-42. Thread Split - - (5) +/- - () - ()
Multiple Instances (MI) Patterns
WCP-12. MI without Synchronization + 6 (+) + 7(+) [12 (+/-)
WCP-13. MI with a priori + 6 (+) + 7(+) [19 (+/-)
Design-Time Knowledge
WCP-14. MI with a priori + 6 (+) - 7(+) - (=)
Run-Time Knowledge
WCP-15. MI without a priori - - (=) - - (=) - (=)
Run-Time Knowledge
WCP-34. Static Partial Join for MI +/- 10 (+/-) - 8 (+/-)| -()
WCP-35. Cancelling Partial Join for MI + 10 (+) - 8 (+) - (=)
WCP-36. Dynamic Partial Join - - (=) - - (=) - (=)
for Multiple Instances
State-based Patterns
WCP-16. Deferred Choice + 9 (+/-) + 8 (+) | 10 (4)
WCP-17. Interleaved Parallel Routing + - () +/- 16 (+/-)| - ()
‘WCP-18. Milestone + 11 (+/-) - 11 (+/-)[11 (+/-)
WCP-39. Critical Section + 9 (+/-) + 15 (+/-)| 40 (-)
‘WCP-40. Interleaved Routing + 9 (+/-) + 15 (+/-)| 40 (-)
Cancellation Patterns
WCP-19. Cancel Activity + 9 (+/-) 8 (+/-) |8 (+/-)
WCP-20. Cancel Case + 4 (4 + 3(+) 3 (+)
WCP-25. Cancel Region + 9 (+/-) +/- 8 (+/-) |8 (+/-)
WCP-26. Cancel MI Activity + 14 (+/-) - 13 (+/-)| 55 (-)
WCP-27. Complete MI Activity - 10 (+) - 8 (+) - (-)
Iteration Patterns
WCP-10. Arbitrary Cycles + 17 (-) - 18 (-) 18 (-)
WCP-21. Structured Loop + 5 (+) + 5 (+) 5 (+)
WCP-22. Recursion - - (-) - - (=) - (=)
Termination Patterns
WCP-11. Implicit Termination + 0 (+) + 0 (+) 0 (+)
WCP-43. Explicit Termination + 9 (+/-) - 6 (+) 6 (+)
Trigger Patterns
WCP-23. Transient Trigger + (-) - - (=) - (=)
WCP-24. Persistent Trigger + 0 (+) + 0 (+) 0 (+

in 18 cases, so this number amounts to 18/29 = 0.62. For all 25 patterns to which
solutions could be found in Sun BPEL, also solutions in WF 4 could be found.
Here, the degree of selectivity of the trivalent measure amounts to 11/25 = 0.44,
and for the edit distance it amounts to 14/25 = 0.56.

It is not surprising that the degree of support for several patterns, such as
Parallel Split or Exclusive Choice, is identical in WF 4 and BPEL 2.0 even using
the edit distance. These patterns relate to concepts that are very common and
consequently the solutions are very similar. For several patterns, such as the
Discriminator and Partial Join patterns in BPEL 2.0, it is interesting to see
that there is no support according to the trivalent measure, but the edit distance
shows that they are relatively easy to implement.

The degree of pattern support has changed marginally from BPEL 1.1 to
BPEL 2.0. There are few differences in the set of activities available and only
the new parallel forEach activity has an impact on the support for control-flow
patterns provided by the language. With the help of this activity, several of the
Multiple Instances patterns can be supported. More efficient solutions to the
Discriminator and Partial Join patterns in BPEL 2.0 could be implemented by
providing a completionCondition for the flow activity similar to the forEach
activity. BPEL 2.0 does not support several patterns due to its structuredness
and the inability to create cycles using links, as well as its threading model. The
support provided by Sun BPEL is severely limited by its lack of links, isolated
scopes and parallel forEach activities.

When comparing WF 3.5 to WF 4, one thing becomes obvious: While the
solutions of the patterns have changed considerably (cf. [9]), there is little change
in the overall degree of support provided by the language. All in all however,
fewer patterns are supported. There are two main reasons for this. First, the
lack of the state machine modeling style that was present in WF 3.5 limits the
support. This modeling style was especially suited to provide elegant solutions to
state-based patterns and several other patterns for unstructured process models.
In April 2011, Microsoft reacted to the demands of the community of WF users
and re-introduced the state machine modeling style for WF 4 in its first platform
update of .NET 4E| Second, while the new flowchart modeling style provides an
excellent means for building unstructured, graph-oriented process models, it is
not able to live up to its full potential, due to its inability to describe concurrent
branches. A Parallel Split or Multi-Choice construct is yet missing in this style.

Altogether, the support provided by WF 4 and BPEL 2.0 is still very similar.
Things are different when comparing Sun BPEL and WF 4. WF 4 provides
support for more patterns and the solutions are often also less complex.

4.2 Service Interaction Patterns

Service interaction patterns [2] describe interaction scenarios that are typical in
the B2B domain. Due to their distributed nature, nearly all service interaction
patterns must be implemented by more than one process. In most cases there is an

5 The documentation is available at http://support.microsoft.com/kb/2478063

http://support.microsoft.com/kb/2478063

initiator process that starts a communication session and one or more responder
processes. The edit distance that describes the support for a pattern is the sum
of the edit distances of all the processes involved. The results of the analysis for
the service interaction patterns are outlined in Table 2] The degree of support

Table 2. Support of Service Interaction Patterns

Pattern | WF 4 |BPEL 2.0/Sun BPEL
Single-Transmission Bilateral Patterns

SIP-1 Send VI T R 7
SIP-2 Receive 4 (+) 7(+) 7(+)
SIP-3 Send/Receive 9 (+) |15 (+/-)| 15 (+/-)
Single-Transmission Multi-lateral Patterns

SIP-4 Racing Incoming Messages 9 (+) 8 (+) 10 (+)
SIP-5 One-to-Many Send 9 (+) 12 (+) 12 (+)
SIP-6 One-from-Many Receive 37 (4+/-)| 49 (+/-) | 49 (+/-)
SIP-7 One-to-Many Send/Receive 36 (+/-)] - (=) - ()
Multi-Transmission Bilateral

SIP-8 Multi Responses 71 (-) 90 (-) 90 (-)
SIP-9 Contingent Requests 28 (+) | 34 (+) 34 (+)
SIP-10 Atomic Multicast Notification| 40 (-) - () - ()
Routing Patterns

SIP-11 Request with Referral 21 (+) | 28 (+) - ()
SIP-12 Relayed Request 31 (+/-)| 47 (+/-) - ()
SIP-13 Dynamic Routing - (-) -9 - ()

for the service interaction patterns provided by WF 4 is considerably better than
that of BPEL 2.0. WF 4 provides a wider range of messaging activities and its
correlation mechanism is less restrictive. WF 4 supports more patterns and, as
the edit distance demonstrates, almost all solutions are less complex. As before,
Sun BPEL falls behind the other two languages in both, the number of patterns
supported and the complexity of the solutions. Especially its lack of support
for dynamic partner binding is critical, resulting from the inability to re-assign
endpoint references to partnerLinks.

4.3 Time Patterns

Time patterns 8] mark typical time-related constraints of the control-flow per-
spective of processes. The results of the analysis of the support for time patterns
are given in Table [3] The support for time patterns relies heavily on the repre-
sentation for dates and times and the expression languages available. WF 4 uses
sophisticated data types and time-based operations from the .NET class library.
BPEL 2.0 requires only the support for XPath 1.0 as expression language, which
completely lacks time-based operations. Sun BPEL incorporates some time-based
functions of XPath 2.0 and thus allows to increase the degree of pattern support.
In fact, for this pattern catalog, Sun BPEL excels BPEL 2.0. By consolidating the
BPEL standard to also require the support for XPath 2.0 as expression language,
BPEL would achieve a similar degree of support as WF 4.

Table 3. Support of Time Patterns

Pattern [WF 4 [BPEL 2.0[Sun BPEL

Durations and Time Lags
TP-1. Time Lags between two Activities| 8 (+) - (=) -
TP-2. Durations 6 (+/-)| 7T(+/) | T(+/)
TP-3. Time Lags between Events 8 (+) - (-) - (-)

Restrictions of Process Execution Points

TP-4. Fixed Date Elements 3 (+) 3 (+) 3 (+)
TP-5. Schedule Restricted Elements 3 (+) - () - ()
TP-6. Time Based Restrictions 6 (+) - (=) - (=)
TP-7. Validity Period 4 (4) - (-) 4 (+)
Variability

TP-8. Time Dependent Variability [3(H) JI1 (/] 4(#H)
Recurrent Process Elements

TP-9. Cyclic Elements 12 (+/-)| - () - (=)
TP-10. Periodicity ‘ 8 (+/-) ‘ 7(-) ‘ 7 ()

4.4 Patterns for Changes in Predefined Regions

Patterns for changes in predefined regions are a subset of the change patterns [24].
They describe structures that allow for changes in the control-flow perspective
of processes at run-time. In most cases, these structures can be captured using
certain control-flow patterns. As can be seen in Table[d WF 4 and BPEL 2.0 are

Table 4. Support of Patterns for Changes in Predefined Regions

Patterns for Changes in Predefined Regions [WF 4 [WS—BPEL 2.0[Sun BPEL

PP-1. Late Selection of Process Fragments 9 (+/-) 8 (+) 10 (+)
PP-2. Late Modeling of Process Fragments - () - (- - (-
PP-3. Late Composition of Process Fragments|9 (+/-) 15 (+/-) 40 (-)
PP-4. Multiple Instance Activity 6 (+) 7(+) - ()

roughly equivalent concerning their support for patterns for changes in predefined
regions. On average, the solutions in WF 4 are less complex. In any case WF 4
and BPEL 2.0 excel Sun BPEL.

5 Conclusion and Outlook

This study introduced an edit distance-based measure for assessing pattern sup-
port that overcomes granularity and selectivity issues of the traditional measure.
Its applicability was assessed by an analysis of the orchestration languages BPEL
2.0, Sun BPEL, and WF 4. The use of this support measure for calculating
the degree of support overcomes the problems the traditional trivalent support
measure posed on preceding analyses. What is more, it gives a notion for the
complexity of a solution to a pattern in a language and the effort required by its
implementer. Also, it is directly comparable across the boundaries of languages
and pattern catalogs. Future analyses can provide more meaningful and selective
results by relying on this edit distance support measure.

Furthermore, the results show that WF 4 excels both, BPEL 2.0 and its
implementation Sun BPEL, concerning the degree of pattern support. BPEL 2.0
and WF 4 are largely equivalent concerning their degree of support for control-flow
and change patterns. Things are different when looking at the service interaction
and time patterns. WF 4 supports two service interaction patterns that are not
supported by BPEL 2.0 and more than twice as many time patterns. Furthermore,
for almost all time and service interaction patterns, the solutions are less complex
in WF 4. For Sun BPEL, the analysis demonstrates that its degree of pattern
support is rather limited.

Future work concentrates on the automation of the calculation of the edit
distance. The edit operations presented here can serve as foundation for a unified
model of orchestration languages that allows for an automated calculation of
distance values. To fully automate the computation, it is necessary to construct a
mapping from a concrete orchestration language to this model. Another open issue
is the assessment of the efficiency and scalability of the solutions described here.
As discussed, we cannot guarantee that we have found the most efficient solutions
to all patterns in the languages in focus. A community approach, starting with
the results from [9] and involving researchers from other institutions, might help
to optimize the process models. Also the analysis of closely related languages,
such as BPMN 2.0, is an interesting field of study.

References

1. A. P. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-
Oriented Architectures. In M. B. Dwyer and A. Lopes, editors, FASE, volume 4422
of LNCS, pages 245259, Braga, Portugal, March/April 2007. Springer, Heidelberg.

2. A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service Interaction Patterns.
In BPM, pages 302-318, Nancy, France, September 2005.

3. B. Bukovics. Pro WF: Windows Workflow in .NET 4. Apress, June 2010. ISBN-13:
978-1-4302-2721-2.

4. J. Cardoso. Business Process Quality Metrics: Log-Based Complexity of Workflow
Patterns. In R. Meersman and Z. Tari, editors, On the Move to Meaningful Internet
Systems: CooplS, DOA, ODBASE, GADA, and IS, volume 4803 of LNCS, pages
427-434. Springer, Heidelberg, 2007.

5. G. Decker and J. Mendling. Process Instantiation. Data and Knowledge Engineering,
Elsevier, 68:777-792, 2009.

6. G. Decker, H. Overdick, and J. Zaha. On the Suitability of WS-CDL for Choreo-
graphy Modeling. In EMISA, pages 21-33, Hamburg, Germany, October 2006.

7. R. M. Dijkman, M. Dumas, and L. Garcia-Bafiuelos. Graph Matching Algorithms
for Business Process Model Similarity Search. In BPM, pages 48—63, Ulm, Germany,
September 2009.

8. A. Lanz, B. Weber, and M. Reichert. Workflow Time Patterns for Process-Aware
Information Systems. In BPMDS and EMMSAD in conjunction with CAiSE,
LNBIP, pages 94-107, Hammamet, Tunisia, June 2010. Springer, Heidelberg.

9. J. Lenhard. A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Technical Report 88, Otto-Friedrich-Universitdt Bamberg, March 2011. Bamberger
Beitrage zur Wirtschaftsinformatik und Angewandten Informatik.

10

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Lenhard, A. Schénberger, and G. Wirtz. Streamlining Pattern Support Assess-
ment for Service Composition Languages. In ZEUS, volume 705 of CEUR Workshop
Proceedings, pages 112-119, Karlsruhe, Germany, February 2011. CEUR-WS.org.
V. L. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady, 10(8):707-710, 1966.

A. Norta, M. Hendrix, and P. Grefen. A Pattern-Knowledge Base Supported
Establishment of Inter-organizational Business Processes. In R. Meersman, Z. Tari,
and P. Herrero, editors, On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, volume 4277 of LNCS, pages 834-843. Springer, Heidelberg, 2006.
OASIS. Web Services Business Process FExecution Language, April 2007. v2.0.

A. O’Hagan, S. Sadiq, and W. Sadiq. Evie - A developer toolkit for encoding service
interaction patterns. Information Systems Frontiers, 11(3):211-225, 2009.

M. P. Papazoglou and D. Georgakopoulos. Service-oriented Computing. Communi-
cations of the ACM, 46(10):24-28, October 2003.

C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46—
52, October 2003.

N. Russell, A. H. M. ter Hofstede, and D. Edmond. Workflow Resource Patterns:
Identification, Representation and Tool Support. In O. Pastor and J. F. e Cunha,
editors, CAiSE, pages 216-232, Porto, Portugal, June 2005. Springer, Heidelberg.
N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.
Workflow Data Patterns: Identification, Representation and Tool Support. In ER,
LNCS, pages 353-368, Klagenfurt, Austria, October 2005. Springer, Heidelberg.
N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mulyar. Workflow
Control-Flow Patterns: A Revised View. Technical report, BPM Center Report,
2006.

N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Workflow Exception
Patterns. In CAiSE, pages 288-302, Luxembourg, Luxembourg, June 2006. Springer.
L. Sanchez-Gonzéalez, F. Ruiz, F. Garcia, and J. Cardoso. Towards Thresholds of
Control Flow Complexity Measures for BPMN models. In Proceedings of the 2011
ACM Symposium on Applied Computing, pages 1445-1450. ACM, 2011.

L. H. Thom, M. Reichert, and C. Iochpe. Activity Patterns in Process-aware
Information Systems: Basic Concepts and Empirical Evidence. IJBPIM, 4(2):93—
110, 2009.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, Springer, 14(1):5-51, 2003.
B. Weber, S. Rinderle-Ma, and M. Reichert. Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data and
Knowledge Engineering, Elsevier, 66(3):438—-466, July 2008.

P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In ER, volume
2813 of LNCS, pages 200-215, Chicago, Illinois, USA, October 2003. Springer.

A. Wombacher and C. Li. Alternative Approaches for Workflow Similarity. In
IEEE SCC, pages 337-345, Miami, Florida, USA, July 2010.

M. Zapletal, W. M. P. van der Aalst, N. Russell, P. Liegl, and H. Werthner. An
Analysis of Windows Workflow’s Control-Flow Expressiveness. In ECOWS, pages
200-209, Eindhoven, The Netherlands, November 2009.

U. Zdun and S. Dustdar. Model-driven and pattern-based integration of process-
driven soa models. IJBPIM, 2(2):109-119, 2007.

P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach, volume 32 of Advances in Database Systems. Springer, Heidelberg,
2006. ISBN 978-0-387-29146-8.

	Edit Distance-based Pattern Support Assessment of Orchestration Languages
	Introduction
	Related Work
	Edit Distance Support Measure
	Common Schema for Process Stubs
	Edit Operations
	Calculation Example

	Results and Evaluation
	Control-flow Patterns
	Service Interaction Patterns
	Time Patterns
	Patterns for Changes in Predefined Regions

	Conclusion and Outlook

