Automated and Isolated Tests for Complex Middleware Products:
The Case of BPEL Engines

Simon Harrer, Cedric Rock and Guido Wirtz
Distributed Systems Group
University of Bamberg
Bamberg, Germany
{simon.harrer,guido.wirtz} @uni-bamberg.de
cedric-marcel.roeck @stud.uni-bamberg.de

Abstract—Today, a plethora of enterprise middleware so-
lutions are available, leading to the problem of choosing
the right tool for a specific use case. Automated tests can
support the selection of such software by determining decision
relevant metrics, like e.g., throughput or the degree of standard
conformance. To avoid side effects between tests, test isolation,
i.e., to provide fresh instances of the software for each test exe-
cution, is essential. However, middleware suites are inherently
complex, provide a large range of configuration options, have
tedious or sometimes manual installation procedures, and long
startup times. These idiosyncrasies aggravate the creation of
fresh instances of such middleware suites, leading to slower
turnaround times and increasing the cost for ensuring test
isolation. We aim to overcome these issues with methods and
tools from the area of virtualization and devops. In this work,
we focus on BPEL engines which are common middleware
components in Web Service based SOAs. We applied our
proposed method to the BPEL Engine Test System (befsy),
a conformance test suite and testing tool for BPEL engines.
Results reveal that our method a) enables automatic creation
of fresh instances of software without manual installation steps,
b) reduces the time to create these fresh instance dramatically,
and c) introduces only a neglectable performance overhead,
therefore, reducing the overall costs of testing complex software.

Keywords-test isolation, test automation, virtualization,

BPEL engines

I. INTRODUCTION

Today, middleware suites provide the foundation of almost
any enterprise IT landscape. In 2012, Gartner estimates the
market for such middleware products at $20 billio In
this market, a plethora of middleware suites exist which
differentiate in both functional and non-functional capabil-
ities. This variety ensures that the selection of a suitable
middleware is itself a “nontrivial project” [1, p. 88]. Instead
of manually checking the suitability of multiple middleware
suites, we can leverage automated tests to automatically
calculate decision relevant metrics [1l]. For example, the
degree of standard conformance helps determining the
functional capabilities whereas the performance metrics, e.g.,

"Market Share: All Software Markets, Worldwide, 2012, Colleen Graham,
et al, March 29, 2013

transactions per second or execution time, helps determining
the non-functional capabilities. To guarantee correct results
of test suites producing such metrics, we need to avoid any
side effects between test cases, that is, we need to ensure test
isolation [2]]. The safest way to guarantee full test isolation
is to provide a fresh instance by reinstalling and starting
the software for each test case. This prevents any possible
side effects from one test to another. However, due to the
purpose and role of middleware systems, these software
components are inherently complex [3]. This manifests itself
in multiple forms, e.g., the high number of configuration
parameters, a tedious as well as time consuming installation
processes, and long startup times. These idiosyncrasies
aggravate benchmarking of such software systems in two
ways. First, a tedious and complex installation processes may
include manual steps which may not be that easily automated.
This is problematic as the reliability and repeatability of tests
depends on their ability to be automated. Second, the time
until the next fresh instance is available for testing is the sum
of the installation and the startup time. This test preparation
time is engine dependent and can vary greatly. If this time
is high, the test turnaround time per test is high as well. We
present and answer the following research question in our
paper:

How to provide a fresh and started instance of a complex
software in a time efficient and effective manner automati-
cally?

As the field of different middleware systems is wide,
we focus on one particular type of component in modern
middleware suites, namely process engines in general and
BPEL engines in particular. The BPEL 2.0 specification [4]
is the de facto standard for orchestrating services within a
Web Service based Service-oriented Architecture (SOA) [3].
The language defined in the specification provides control-
flow and data-flow activities to implement such service
orchestrations by means of exchanging SOAP messages.
Since the finalization of the standard in 2007, multiple open
source and commercial BPEL engines have emerged, leaving
the developer with an agony of choice which can be mitigated
by automated tests [6]]. These engines, however, cannot be

executed standalone, but have to be either deployed to a
managed environment with diverse complexity, being it a
servlet container, an application server or an enterprise service
bus (ESB) [7]. Consequently, these BPEL engines inherit the
issues of their managed environment, i.e., having tedious and
time intensive installation processes and long startup times.
In open source BPEL engines, the installation time ranges
from approx. three seconds up to more than two minutes
[8]. The installation of commercial products in this field is
even more tedious. The Oracle Business Process Engine, for
example, is part of the Oracle SOA Suite 11gR1 middleware.
The guide that describes the installatio requires the user to
a) download five files summing up to five GB in totaﬂ and
b) follow the necessary installation steps described on 48
pages. The issue of the startup time is not that pressing as the
issue of installation, but should not be neglected. While the
open source engines start in at most one minute, commercial
ones within large middleware suites may have much longer
startup times. The Oracle middleware suite requires more
than ten minutes until it is up and runningﬂ

The BPEL Engine Test System (betsy) can automatically
evaluate the conformance and the expressiveness of such
BPEL engines using test cases [[6]. Once, one of its test
cases caused an infinite loop within one BPEL engine
which in turn lead to the failure of all subsequent test
cases within the test suite [7]. As a consequence, betsy
adopted a straight-forward approach to achieve test isolation:
it creates a fresh and started instance of a BPEL engine by
removing the previously installed engine and reinstalling as

well as starting it. This approach, however, is not scalable.

Harrer et al. [9] evaluated five open source BPEL engines
regarding standard conformance with approximately 130 test
cases. This evaluation took 10 hours to complete. Since
the publication, the number of tests (additional test suites)
and engines (different configurations, commercial ones) has
increased [6]. This caused an increase in time for testing a
single engine as well as all engines together.

In this work, we aim to find ways to reduce the increasing
test time to get feedback more quickly. In particular, we
want to reduce the most time intensive tasks, namely, the
install and startup time of the BPEL engines. With vbetsy,
our extension of the testing tool betsy, we are able to reduce
overall test execution time, including the three test phases
setup, test execution and teardown, by up to 93% while
still retaining test automation and isolation. This is done
by reducing the installation time of each BPEL engine by
encapsulating each engine within a reusable VM image and
the startup time of each BPEL engine by creating and then

restoring a snapshot of a VM with an already started engine.

2The installation guide is available at http://bit.ly/soasuitequickstartguide

3See page five and six at http://bit.ly/soasuitequickstartguide

4This was measured by starting the AdminServer in the prebuilt virtual
machine (VM) provided from Oracle at http://www.oracle.com/technetwork/
middleware/soasuite/learnmore/vmsoa- 172279.html!

This approach guarantees test isolation, as for every test a
freshly restored instance of a VM is provided. Moreover, it
also guarantees test automation, as we provide a) scripts to
automatically create and provision new VMs and b) interfaces
to import, start and stop VMs as well as create and restore
snapshots from within betsy.

The paper itself is structured as follows. In section [}
we discuss related work, namely, middleware and BPEL
engine benchmarking, automated provisioning of VMs and
test isolation using VMs. Next, we give a short description
of betsy and its current approach on creating fresh engine
instances in section [Tl In section [V} we provide details on
vbetsy, the extension of betsy with virtualization techniques
and devopf] methods, followed by an evaluation of the
performance improvements in section |V| The paper closes
with a discussion of the limitations of our approach in
section [VI] and a summary and future work in section

II. RELATED WORK

Related work is subdivided into (A) benchmarking mid-
dleware and BPEL engines, (B) provisioning of VMs and
(C) the usage of VMs for testing purposes.

A. Benchmarking Middleware and BPEL Engines

Benchmarking middleware and BPEL engines is a wide
field, therefore, we focus solely on performance and confor-
mance evaluations.

Testing middleware components, e.g., ESBs, Java Messag-
ing Systems (JMS) and BPEL engines, under heavy load
is an area of some interest [10], [L1], [12], [13]], [14], [15].
Regarding BPEL engines, three different performance studies
are available. Bianculli et al. [[13] present SOABench which
allows to generate testbeds for testing SOA applications.
Based on their testbed generation tool, they compared the
performance of four BPEL processes on three BPEL engines
in [[14]. In contrast, Roller [[15] focuses on benchmarking
solely a single commercial BPEL engine with the aim of
improving its performance based on his previously obtained
test results. As part of the development of a BPEL engine for
mobile devices called sliver [16]], Hackmann et al. conducted
a performance comparison of sliver and ActiveBPEL based
on twelve test cases. However, these three approaches do not
use any automated test isolation strategy.

Regarding conformance testing, much work has been
done in the area of Java Enterprise Edition (JEE). Oracle
provides Test Compatibility Kits (TCKs) which can be used
to evaluate whether a servlet container implements the servlet
specification, however, provides no test isolation mechanisms.
Lately, the conformance of BPEL engines has been of interest.
In [6] and [9], open source as well as commercial BPEL
engines were put under scrutiny by evaluating which of the
BPEL features and of the workflow patterns [[17]] from van

SFor a definition see Gartner, Hype Cycle for Cloud Computing, 2011

http://bit.ly/soasuitequickstartguide
http://bit.ly/soasuitequickstartguide
http://www.oracle.com/technetwork/middleware/soasuite/learnmore/vmsoa-172279.html
http://www.oracle.com/technetwork/middleware/soasuite/learnmore/vmsoa-172279.html

#1 b
Prepare Folders

#2 #3 #4 #5
Generate BPEL Generate Test Install Engine Start Engine

#6 #7 #8 #9 #10
Deploy BPEL Execute Test Collect Logfiles Stop Engine Generate Reports

per test per engine

Figure 1.

der Aalst et al. they support. This work is based upon the
tool used in these publications.

B. Provisioning of Virtual Machines and Appliances

In the area of provisioning applications within VMs, there
are basically two approaches available. The most popular
approach is based on script-based solutions, e.g., Puppe
chef[l} and sprinkid’] These have in common the steps
required to install and verify the correctness of the installation
of a specific component are specified in a module. These
modules may then be reused and reconfigured for more com-
plex environmental infrastructure. Lately, however, a more
service-based solution has emerged based upon the OASIS
standard Topology and Orchestration Specification for Cloud
Applications (TOSCA) [18]. Instead of implementing these
steps in scripts, the steps are implemented as BPEL processes.
This has the advantage that visualizing the provisioning
process as well as monitoring its execution is basically free.
For TOSCA, there exists a reference implementation of the
modeling tool [19] and the runtime [20]. For vbetsy, we
leverage sprinkle for the provisioning scripts while aiming
to convert them to TOSCA processes in the future.

C. Testing with Virtual Machines (VMs)

Since the emergence of virtualization technology, many
approaches have adopted the use of VMs for enabling or
speeding up testing. Especially in the area of testing the
design of a website in different browsers, it is widely applie(ﬂ
In this case, the system under test is the web application
and the VMs are different test cases while we use VMs the
other way round. But also in the area of testing middleware,
VMs are used. For evaluating the performance of ESBs,
the corresponding ESBs are installed on Amazon EC
where the test itself is executed as well. While they use
VMs, they do not control them during test execution but just
leverage the cheap availability of infrastructure in the cloud
instead of buying physical hardware. Another approach which
controls VMs and uses snapshot restoration during test is the
ruby project Virtual Machine Test HarnessE] (VMTH). Its
purpose is the automatic unit testing of provisioning scripts
for kernel-based virtual machines (KVMs) running solely on
linux. While it also uses VMs and snapshot restoration in a

6 Available at http://puppetlabs.com/,

7 Available at http://www.getchef.com/.

8 Available at http://rubygems.org/gems/sprinkle,

9For example at http://browsershots.org/,

10See hhttp://esbperformance.org/display/comparison/ESB+Performance

1Greg Retkowski. VMTH - Virtual Machine Test Harness. January 2014.
url: http://github.com/gregretkowski/vmth,

betsy Test Procedure. Adopted from [9].

similar way as vbetsy, its software under test are provisioning
scripts which alter the VM itself while vbetsy tests BPEL
engines. Due to its focus on its specific domain, VMTH is
not reusable for our problem.

III. StAaTUS QUO

This work relies on the BPEL conformance test suite
and tool betsﬂ and extends it. Betsy follows the ten-step
test procedure given in Figure [T] and is able to execute this
automatically. Step #1 and #10 prepare the output folder
structure containing all generated files and generate reports
detailing the results of a single test run, respectively. Both
steps are executed once for a whole test run while the steps
#2 to #9 are executed for every single test case on every
engine. In step #2, an engine dependent BPEL process is
generated from an engine independent one and converted
to a deployable archive. Next, the corresponding soapUI
test case is generated. In step #4 and #5, betsy installs and
starts the engine under test locally on the same host as the
testing tool is running, followed by the deployment of the
previously created archive and the execution of the soapUIE]
test case. After executing the test in step #7, the log files
of the engine under test are collected for analysis in step
#8. The test procedure for a single test case is finished by
stopping the previously started engine in the last step.

install and start 5

deploy o
3| & [st _jes £
g g collect logs ?:n

w

stop

>

Figure 2. Architecture and Execution Flow of a betsy Test Case Execution.

In this context, we focus on the six steps interacting with
the engine under test: installing, starting and stopping the
engine as well as deploying the BPEL archive, executing
the test case and collecting the log files. In Figure 2| these
steps are presented as a simplified flow chart highlighting
the involved components. In case of executing the test case,
betsy leverages soapUI, while in the five remaining tasks,
it interacts directly with the engine under test. These five
tasks are grouped in three life cyle tasks and two engine
actions as part of betsy’s architecture. For this purpose,
betsy provides the two Java interfaces EngineLifecycle
and EngineAction in Listing [I] These methods are
implemented for every local engine using Apache Ant tasks

12For a more detailed technical report of betsy, see [7].
13The tool soapUI allows to test functional properties of Web Services.

http://puppetlabs.com/
http://www.getchef.com/
http://rubygems.org/gems/sprinkle
http://browsershots.org/
http://esbperformance.org/display/comparison/ESB+Performance
http://github. com/gregretkowski/vmth

#1 b
Prepare Folders

per test per engine

#2 #3 #4 #5 #6 #7 #8 #9
Generate BPEL Generate Test Execute Test

#10
Generate Reports

:| Unmodified

Figure 3.

and interact with the engines either via CLI, file system
operations or Web Service calls.

Listing 1. Common Interface for every Engine
interface Enginelifecycle {

void install(); // incl.

void startup();

void shutdown() ;

boolean isRunning();

re—install

// observable

e

nterface EngineActions {
boolean deploy(BPELArchive archive)
LogFiles getLogs();

SOOI N W —

—_
[=—

IV. VM TESTING EXTENSION

In this section, we present our main contribution, an exten-
sion of the tool betsy we call vbetsy(betsy with virtualization
support). The idea is to use VMs and their ability to create
and restore previously created snapshots to provide fresh and
started instances for each test case execution. vbetsy is open
source and publicly available{ﬂ First, we present our life
cycle model of a VM in section Next, the necessary
changes to the test procedure and the architecture of betsy
on the basis of the life cycle model of the VMs are shown
in section while the approach on creating the VMs
using methods from the devops movement is presented in
section Last, two issues we faced during development
of vbetsy are detailed.

A. Our Execution Model of Virtual Machines

To harvest the benefits of using VMs in contrast to the
local approach, we need to look at our life cycle model of a
VM within vbetsy as shown in Figure

restot(_ﬂBDRTED
-, festore() -, 5tart{]

k SANVED

kill)

—»{ OFF
7y

stap()

Figure 4. State Chart of our Virtual Machine Lifecycle

From the initial state OFF, we can only restore a previously
created snapshot. In this snapshot, any software that is
required for testing may already be started. From this SAVED
state, the VM is started. Within this ACTIVE state, it is usable
exactly for one test case execution. When the test is done, the
VM must be stopped returning to its initial state. In case of
any unrecoverable errors within the VM, the started instance

14See (https://github.com/uniba-dsg/betsy/tree/icst2014,

: VirtualBox

: Betsy Service

Architecture and Execution Flow of a vbetsy Test Case Execution.

can also be killed. In both cases, the next step is to restore
the snapshot and proceed to the SAVED state. Any VM used
in vbetsy must only change according to our model provided
in Figure 4] To guarantee this, vbetsy ships with an interface
(see Listing [2) that corresponds to the state transitions of the
described figure. This interface is implemented by vbetsy on
top of VirtualBox to control any VM of VirtualBox according
to our execution model of VMs.

Listing 2. Common Interface for our Virtual Machine Execution Model
l interface VirtualMachineLifecycle {

2 void start();

3 void stop();

4 boolean isActive();
5 void kill();

6 void restore();

7}

B. Changes in the Test Procedure and Architecture

With the state machine of the VM life cycle in mind,
vbetsy modifies the test procedure and architecture. Figure [3]
details the changes of the test procedure. The five steps
marked blue (#1, #2, #3, #7, and #10) are unchanged while
the yellow steps (#4, #5, and #9) are fulfilled by VirtualBox
and the green tasks (#6 and #8) by vbetsy in conjunction
with the Betsy Service on the engine VMs. The modification
within these five altered steps is best presented in the new
flow chart of executing a test case with vbetsy as given in

Figure [5]

install and starty ™ vBox 5

>

A S I P deploy__ | __{________| Z
af 2 _)ELS < |2
28 ? 3 =[5
3 T collectlogs| _ | o) =

g z

stop > VBox [—>

Figure 5. The architecture and execution flow of a vbetsy test case execution

As the chart shows, vbetsy installs, starts and stops the
VM (and the BPEL engine transitively) via the API of
VirtualBox, and deploys the BPEL archive to and collects
the log files from the engine under test via an API of
the Betsy Service. This is stark contrast to the execution
flow of betsy in Figure [2] where betsy interacts directly
with the engine. As these five tasks are specified in the
two interfaces in Listing [l| within betsy, vbetsy simply
provides additional implementations for both interfaces. The
methods start and stop of the EnginelLifecycle
interface are mapped to the equivalent methods of

https://github.com/uniba-dsg/betsy/tree/icst2014

Betsy Service

OpenESB BPEL SE v2.2

bpel-g 5.3 Apache ODE 1.3.5 Orchestra 4.9.0 OpenESB v2.2 Petals BPEL SE 4.0 Active-BPEL v5.0.2

Java Service Wrapper Apache Ant 1.9.2 @ Petals ESB 4.0 @

Figure 6. Deployment Topology of all BPEL Engines and the Betsy Service

the VirtualMachineLifecycle while the install
method is implemented by means of the restore method
while in turn, the VirtualMachineLifecycle is im-
plemented on top of the VirtualBox Java Web Service. In
contrast, the methods of the EngineActions interface are
implemented by the Betsy Service which receives the required
deploy data or the location of the log files and interacts with
the engine on this basis. This interaction with the engines is
implemented the same way as in the local approach because
the Betsy Service reuses both the deployment and collect
routines from betsy to avoid code duplication. vbetsy calls
the Betsy Service by exchanging serialized Java objects over
a TCP connection.

C. Provisioning of BPEL engines

To create the required VMs for each BPEL engine under
test, we need to create a) a VM image, b) install the BPEL
engine under test as well as the Betsy Service and c) export
the image as a portable VM. To achieve this, we adopt
methods from the devops movement, i.e., we convert the
creation of the VMs including the BPEL engines to code.

First, a minimal linux machine, the base image, is installed
within a VM as our foundation for all subsequent steps. It is
granted 4 GB RAM and a single core processor. Moreover,
the audio capabilities are deactivated and the network is
configured using a NAT adapter. This base imageE] is built
upon an Ubuntu Server 12.04.2 LTS. It requires the latest
system updates, a user with sudo privileges and a ssh server.

Second, the BPEL engine and the Betsy Service needs
to be provisioned on the base image. Figure [6] shows the
dependency graph of all BPEL engines (gray background),
the Betsy Service (black background) and other software
products (white background). Each edge is a depends on
relation, e.g., Apache ODE 1.3.6 depends on Tomcat 7.0.26.
This dependency graph has been converted to executable pro-
visioning scripts that can install any node alongside its direct
as well as transitive dependencies. These provisioning scripts
are implemented with sprinkle v0.7.6.2. The domain specific
language of sprinkle allows to declare such a dependency
graph straight-forward in its own executable constructs. Each
node in Figure [6]is implemented as a sprinkle package which

5The base image is available at https://Ispi.wiai.uni-bamberg.de/svn/
betsy/ova/basevm.ova.

includes the download, installation, configuration, and start
of the component in terms of a sequence of command line
calls. The edges between the nodes are directly ported to
dependencies between these sprinkle packages. Based on
these packages, we created so called sprinkle policies for
each VM which automatically install both the engine as
well as the Betsy Service. The sprinkle scripts containing
all packages and policies are open source and publicly
available at https://github.com/uniba-dsg/betsy-engines. Next,
we provisioned all VMs by applying each of the six policies
on a separate base VM.

Third, the six provisioned VM images have been exported
to portable ova archives which are available for download
at |https://Ispi.wiai.uni-bamberg.de/svn/betsy/ova. During the
execution of vbetsy, these ova archives are downloaded
from the given URL, imported into VirtualBox, and started.
However, these host independent and therefore portable
ova packages cannot contain host dependent snapshots. To
circumvent this problem, the snapshots are created on demand
by vbetsy itself. This is possible as the BPEL engines and
the Betsy Service are configured to start automatically during
system startup. Thus, vbetsy downloads the vm, imports it
into VirtualBox and starts it. When the engine and the Betsy
Service are up and running, it saves a snapshot which is then
reused for any subsequent tests.

To make this process repeatable, we automated it. As
the base VM only has to be created once, this step can be
automated by reusing a previously created base VM. For the
other two steps, we implemented a Groovy scriptﬁ] which
can automatically provision a VM for any of the six BPEL
engines and export the image as an ova archive. For engines
that require manual installation steps, the archive can also
be created manually.

D. Issues

During the development of vbetsy, we faced two major
issues regarding the usage of VirtualBox. First, as we auto-
matically apply port forwarding rules to our VMs via the Java
API of VirtualBox, we detected a bu within VirtualBox
v4.2.12. The bug was hard to track down as it occurred non-
deterministically only on Mac OS X. Second, every machine

16The script is available at https:/github.com/uniba-dsg/betsy/blob/master/
src/main/groovy/betsy/tool/VirtualMachinelnstaller.groovy:
/See https://www.virtualbox.org/ticket/11635| for the bug report.

https://lspi.wiai.uni-bamberg.de/svn/betsy/ova/basevm.ova
https://lspi.wiai.uni-bamberg.de/svn/betsy/ova/basevm.ova
https://github.com/uniba-dsg/betsy-engines
https://lspi.wiai.uni-bamberg.de/svn/betsy/ova
https://github.com/uniba-dsg/betsy/blob/master/src/main/groovy/betsy/tool/VirtualMachineInstaller.groovy
https://github.com/uniba-dsg/betsy/blob/master/src/main/groovy/betsy/tool/VirtualMachineInstaller.groovy
https://www.virtualbox.org/ticket/11635

Table T
AVERAGE EXECUTION TIME IN SECONDS OF THE ENGINE LIFECYCLE TASKS PER ENGINE BEFORE AND AFTER USING VIRTUALIZATION.

before / local after / virtual diff / local - virtual

Engine install start stop % install start stop % install start stop %
ActiveBPEL v5.0.2 14.12s 5.02s 0.52s 19.66s 0.30s 1.86s 0.58s | 2.74s 13.82s 3.16s -0.05s 16.92s
bpel-g v5.3 3.74s 9.04s 0.47s 13.25s 0.33s 1.72s 0.47s | 2.52s 3.42s 7.32s 0.00s 10.73s
Apache ODE v1.3.5 5.67s 9.30s 0.47s 15.43s 0.25s 1.70s 0.23s | 2.17s 5.42s 7.61s 0.23s 13.26s
OpenESB BPEL SE v2.2 | 129.11s 26.52s 7.96s | 163.59s | 0.21s 1.82s 0.46s | 2.49s | 128.90s 24.70s 7.50s 161.10s
Orchestra v4.9.0 18.06s 12.37s 0.49s 3091s 0.22s 1.93s 0.23s | 2.38s 17.83s 10.44s 0.26s 28.53s
Petals BPEL SE v4.0 7.05s 19.43s 0.48s 26.96s 0.25s 1.82s 0.28s | 2.34s 6.81s 17.61s 0.20s 24.61s
average 29.63s 13.61s 1.73s | 44.97s 0.26s 1.81s 0.37s | 2.44s 29.37s 11.80s 1.36s 42.53s
min 3.74s 5.02s 0.47s 13.25s 0.21s 1.70s 0.23s | 2.17s 3.42s 3.32s 0.24s 11.08s
max | 129.11s 26.52s 7.96s | 163.59s | 0.33s 1.93s 0.58s | 2.74s | 128.90s 24.59s 7.38s 160.85s

standard deviation 49.04s 7.94s 3.05s 58.50s 0.04s 0.09s 0.15s | 0.19s

in VirtualBox is configured with a LinkUpDelay by default,
which ensures that packets frozen in the network stack of
a snapshot will not get lost when the network environment
changes. To achieve this, the network stack is enabled with a
delay of approx. five seconds, during which all sent packets
to this machine are lost. Instead of waiting for five seconds

for the machine to become available, we disabled this option.

V. EVALUATION

In this section, we present the evaluation of the feasibility
of our approach and tool by determining the effects on a)
install as well as start time, our main objective, and b) test

time, i.e., any side effects due to the virtualization overhead.

To prove that we can reduce both install and start time
significantly, we execute the same conformance tests five
times for the two variants: betsy and vbetsy, or in other words,
with and without virtualization. The machine, on which the
experiment is conducted, has an Intel i7-2600 processor,
16GB of RAM, and a Western Digital WDIOEALX hard
drive. Software-wise, it is equipped with Windows 7 64
bit, the Java 7u45, soapUI 4.6.2, and VirtualBox 4.2.16
which are required by betsy and vbetsy, respectively. In
addition, we set up a continuous integration server to help
us orchestrate the execution of the different test runs as well
as gather the produced results. For that purpose, we installed
and configured the continuous integration server Jenkins CI
v1.545 along with Git for Windows v1.8.5.2.

The results of the experiment regarding the engine life
cycle tasks install, start and stop are shown in Table (Il Each
row gives the durations of the three tasks as well as their sum
for all six engines executed with or without virtualization
(virtual vs. local). These values are given in seconds and
are the average of three values from the five runs as we
discard both the highest and the lowest value to reduce
inaccuracy of measurement. These values are stable enough
for this evaluation as the relative standard deviation is below
19% for 70 of our 72 values. While the two other values
have a higher relative standard deviation, they are below
one second, hence, do not affect the overall results. The
last column contains the difference between both variants in

seconds, denoting the improvements made by our approach.
Moreover, the averages, min as well as max values, and
standard deviations per task over all engines are presented
as well.

Before using virtualization techniques, betsy relied only on
local installation, startup and shutdown procedures. The six
engines can be put into three groups according to their total
life cycle time. bpel-g (13.25s), Apache ODE (15.43s) and
ActiveBPEL (19.66) lead the field with at most 20 seconds,
followed by both Petals ESB (26.96s) and Orchestra (30.91s)
which approx. thirty seconds. OpenESB (163.59s) comes in
last as it requires almost three minutes on our test machine.
These numbers reflect the complexity of the runtime container
of the engines, as the ones of the top group, namely Apache
ODE, bpel-g, and ActiveBPEL, run on a light-weight servlet
container, while the engine that came in last, the BPEL
engine of the OpenESB, is running within an ESB that is
deployed onto a heavy-weight application server. A light-
weight container, however, does not guarantee fast install,
start and stop times as Orchestra shows, while a BPEL engine
within an ESB does not necessarily lead to long install, start
and stop times. What is more, the major impact factor of
the total time varies from engine to engine. For OpenESB,
Orchestra and ActiveBPEL, the install time is the driving
factor, while for the other three engines, the start time is
higher than the install and stop time. Moreover, the time to
stop an engine can almost be neglected as it is .5 seconds for
all engines, except for OpenESB which requires approx. eight
seconds to shutdown. This is because OpenESB is stopped
gracefully via a shutdown method while the OS processes
of the other engines are simply killed. In the min, max and
standard deviation values, the wide range of these engine
dependent durations can be observed. The install time has
a range of approx. 125 seconds, followed by the range of
the start task which accounts to approx. 25 seconds. The
stop task has the lowest range with approx. seven seconds.
For the install and the stop task, the standard deviation is
higher than the average, showing that there are very high
differences in the base values, while the start task is quite
balanced around 30 seconds.

Table II
AVERAGE EXECUTION TIME IN SECONDS OF THE ENGINE ACTIONS AND THE TEST TASK PER ENGINE BEFORE AND AFTER USING VIRTUALIZATION

before / local after / virtual diff / local - virtual

Engine | deploy test collect P deploy test collect P deploy test collect P
ActiveBPEL v5.0.2 | 18.16s 0.79s 0.02s 18.97s | 20.18s 0.83s 0.19s | 21.20s | -2.03s -0.04s -0.16s | -2.23s
bpel-g v5.3 9.52s 0.86s 0.02s 10.40s 9.01s 0.93 s 0.18s 10.12s 0.50s -0.07s -0.16s | 0.27s
Apache ODE v1.3.5 3.53s 1.52 s 0.05s 5.10s 4.01s 192s 0.13s 6.06s -0.48s -0.39s -0.09s | -0.96s
OpenESB BPEL SE v2.2 | 4.04s 0.84s 0.06s 4.93s 797s 0.85s 0.17s 8.99s -3.93s -0.02s -0.11s | -4.05s
Orchestra v4.9.0 2.53s 0.77 s 0.02s 3.33s 7.30s 0.96 s 0.20s 8.46s -476s -0.19s -0.17s | -5.13s
Petals BPEL SE v4.0 | 7.05s 232s 0.03s 9.41s 9.66s 338s 0.12s 13.16s | -2.61s -1.06s -0.08s | -3.75s
average 747s 1.18s 0.04s 8.69s 9.69s 1.48s 0.16s 11.33s | -2.22s -0.30s -0.13s | -2.64s
min | 2.53s 0.77s 0.02s 3.33s 4.01s 0.83s 0.12s 6.06s -4.76s -0.06s -0.09s | -2.73s
max | 18.16s 2.32s 0.06s 18.97s | 20.18s 3.38s 0.20s 21.20s | 0.50s -1.06s -0.14s | -2.23s

standard deviation 5.84s 0.63s 0.02s 5.74s 5.51s 1.02s 0.03s 5.36s

Looking at the numbers after applying our extension to
betsy with virtualization techniques, the picture changes
dramatically. The install time ranges between .21s and .33s,
the start time between 1.70s and 1.93s and the stop time
between .23s and .58s. All engines now have almost the
same duration regardless of their previous durations. Instead
of having wide ranges, the durations can be seen as constants.
Thus, the highly engine dependent durations have been
converted to engine independent values. The highest gain is
achieved for OpenESB as it saves 161.10 seconds to create
and throw away a fresh instance, while the savings for the
other engines range from approx. 10s up to 28s.

Next, we investigate the possible side effects of this
approach on the other engine-related steps of the betsy testing
process, namely, on the deploy, test and collect step. In
Table [T, the timings of the test step are shown analogous to
the previous table. Orchestra, OpenESB and Apache ODE
have the fastest deployment process lasting at most four
seconds. Petals and bpel-g form the group in the middle with
7.05s and 9.52s while ActiveBPEL comes in last with 18.16s.
The durations of the test task do not vary as much as the
deploy task, ranging only from .77s to 2.32s. The collect
task is executed very fast as it copies files from one folder
to another on a single hard drive.

Looking at the right part of Table [[I we can see a clear
overhead. All durations, except for a single Valuﬂ, have
increased. The collect task takes .13 seconds longer on
average and the test task .3 seconds. The largest effect of
our extension of betsy on the duration of these tasks is seen
for the deploy task as deployment lasts 2.22 seconds longer.
For the collect task, the changes are completely neglectable
whereas both the deploy and test task have increased up
to almost five seconds in a single case. When comparing
the increase in time of these three steps with the decrease
in time regarding the install, start and stop tasks, we can
say that in that context, they are neglectable as we can still
save at least eleven and at most 157 seconds for executing

18We account this to the fact that bpel-g performs faster on Ubuntu in
the VM as on Windows on the host.

a single test case. In terms of percentages, we were able
to reduce the test case execution time including the setup,
test execution and teardown phases dramatically as shown in
Table Improvements range between 38% for ActiveBPEL
and 93% for OpenESB, whereas the other four engines have
a reduction of at least 47% and at most 68%.

Table IIT
OVERALL REDUCTION IN TEST CASE EXECUTION TIME.

| ActBPEL | bpel-g | ODE | OpenESB | Orch. | Petals

A 14,69s 11,01s | 12,30s 157,05s 23,40s | 20,86s
38% 47% 60% 93% 68% 57%

To sum up, this answers the research question, as our
experiment shows that it is possible to create fresh and started
instances of such software in a timely fashion independent
of any complex installation or startup procedure using
virtualization techniques. Furthermore, it dramatically reduces
overall execution time despite the additional virtualization
overhead.

VI. LIMITATIONS

As vbetsy in contrast to betsy decreases execution time
at the expense of space, this approach requires more RAM
and disk space. While the additional disk space and RAM
for using VirtualBox is neglectable, the VMs themselves
introduce a major overhead due to the operating system (OS)
in the VM onto which the engines are installed. As RAM is
more scarce then disk space, RAM may become a bottleneck,
especially when testing multiple engines at the same time.
Replacing the hard disks used in the evaluation with solid
state disks (SSDs) will reduce the durations for betsy and
vbetsy, as both rely heavily on I/O throughput. However, it
is currently unknown whether it increases or decreases the
advantages of vbetsy over betsy. The additional overhead of
the OS of the VM is also influencing the latency for any
communication with the engine under test, thus, causing an
increase in latency for the actual test step. As this is inherent
to our approach, this has to be taken as a given.

The approach can use any VM image bundled as a portable
ova file, however, the system that imports and uses this

image must be able to fulfill the hardware requirements for
the image, thus, the portable image has a minimum hardware
dependency. Moreover, the snapshots themselves are not
portable and have to created per machine. Consequently, upon
updating the VM image, any snapshot based on this VM has
to be recreated, causing additional overhead. Alternatively,
a newer snapshot can be created upon an existing one. But
this evolution strategy can only be used on single machines
as the snapshots are system-dependent.

The approach is a good fit for the cloud and its available
infrastructure as a service (IaaS) products because new
instances of machines can be easily spawned and discarded.
However, major IaaS vendors, e.g., Amazon EC2, solely
support the creation of disk but no RAM snapshots. Hence,
only a part of our approach is directly implementable on such
IaaS systems. In addition, our approach does not take security
into account, which would be necessary when leveraging
such TaaS offerings.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to provide fresh
and started instances of complex software in an effective
and efficient manor to support test isolation and automation.
By evaluating the install, startup and shutdown times of six
BPEL engines with and without our approach, we showed
that we are able to convert the software dependent install,
startup and shutdown times to constants. Nevertheless, there
is an increase in latency due to the virtualization overhead for
executing the actual test. However, this increase is neglectable
as the gain during the setup and feardown phases of the test
more than outweighed the loss in the fest execution phase,
leading to time savings ranging from approx. 11s (38%) up
to 157s (93%) in total

Future work comprises three aspects: i) reducing the
overhead, ii) creating a more generic approach and iii)
increasing reusability of the provisioning scripts. Firstly,
using VMs inherently reduces performance due to the
additional overhead of two OSs. We aim to reduce this
overhead by moving from OS-based to container-based
virtualization allowing to host multiple isolated containers on
top the host OS. Secondly, our approach and tool can only
be used in conjunction with betsy as it is an extension of it.
To achieve separation of concerns, we want to extract a more
generic tool that solely handles test setup and teardown with
virtual machines. Thirdly, the provisioning of the six open
source BPEL engines is currently encoded within sprinkle
scripts and not easily reusable. We aim to increase reusability
by converting our provisioning scripts to reusable TOSCA
[L8] artifacts to be stored in public TOSCA type repositories.

REFERENCES

[1] S. Vinoski, “The performance presumption [middleware eval-
uation],” Internet Computing, IEEE, vol. 7, no. 2, pp. 88-90,
2003.

[2] A. Gonzilez, E. Piel, and H.-G. Gross, “A model for the
measurement of the runtime testability of component-based
systems,” in ICSTW, 2009.

[3] A. Colyer, G. Blair, and A. Rashid, “Managing complexity in
middleware,” in Proc. 2nd AOSD ACP4IS, Boston, 2003, pp.
21-26.

[4] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[5] C. Peltz, “Web Services Orchestration and Choreography,”
Computer, vol. 36, no. 10, pp. 46-52, October 2003.

[6] S. Harrer, J. Lenhard, and G. Wirtz, “Open Source versus
Proprietary Software in Service-Orientation: The Case of
BPEL Engines,” in ICSOC, 2013.

[71 S.Harrer and J. Lenhard, “Betsy—A BPEL Engine Test System,”
Otto-Friedrich Universitdt Bamberg, Tech. Rep. 90, July 2012.

[8] J. Lenhard, S. Harrer, and G. Wirtz, “Measuring the Installa-
bility of Service Orchestrations Using the SQuaRE Method,”
in SOCA, 2013.

[9] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance
in Open Source Engines,” in Proceedings of the 5th IEEE
SOCA’12, Taipei, Taiwan. 1EEE, 2012.

[10] H. Koziolek, “Performance evaluation of component-based
software systems: A survey,” Performance Evaluation, vol. 67,
no. 8, pp. 634-658, 2010.

[11] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, “Perfor-
mance evaluation of message-oriented middleware using the
specjms2007 benchmark,” Performance Evaluation, vol. 66,
no. 8, pp. 410434, 2009.

[12] S. Strauch ef al., “Implementation and Evaluation of a Multi-
tenant Open-Source ESB,” in ESOCC, 2013.

[13] Bianculli et al., “SOABench: Performance Evaluation of
Service-oriented Middleware Made Easy,” in /CSE, 2010.

[14] ——, “Automated Performance Assessment for Service-
oriented Middleware: A Case Study on BPEL Engines,” in
WWW, 2010.

[15] D. Roller, “Throughput improvements for bpel engines :
implementation techniques and measurements applied to
swom,” Ph.D. dissertation, IAAS, Stuttgart, Germany, 2013.

[16] G. Hackmann et al., “Sliver: A BPEL Workflow Process
Execution Engine for Mobile Devices,” in ICSOC, 2006.

[17] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros, “Workflow Patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5-51, July 2003.

[18] OASIS, Topology and Orchestration Specification for Cloud
Applications, November 2013, v1.0.

[19] O. Kopp et al., “Winery - A Modeling Tool for TOSCA-based
Cloud Applications,” in ICSOC, 2013.

[20] T. Binz et al., “OpenTOSCA - A Runtime for TOSCA-based
Cloud Applications,” in /ICSOC. Springer Berlin Heidelberg,
2013.

VIII. DEMONSTRATION PLAN

In our live demonstration of vbetsy we will show the
performance difference with and without our contribution of
using virtual machines with snapshots instead of reinstalling
and starting engines locally. This is done in three subsequent
steps, namely, (A) execute one test for two open source
engines with betsy, (B) execute one test for two open source
engines with vbetsy, and, (C) show the comparison of the
time differences.

A. Execute Test with betsy (without contribution), approx. 5
min

In the first step, the conformance testing tool betsy is
executed. In this run, we test the Apache ODE 1.3.5 and
the OpenESB v2.3 engine. We have chosen the test case
Sequence as it tests the simplest BPEL process which only
contains a receive and a corresponding reply activity
that echos the received message back to the caller.

During the time betsy is executing, we will show the log
file betsy_time.log viathe $ tail —-f command to
understand the execution flow and get a first glimpse at the
data we will compare in step C.

$ betsy ode, openesb Sequence
B. Execute Test with vbestsy (with contribution), approx. 3
min

In step B, vbetsy is executed. In technical terms, we invoke
betsy with the same parameters as in step (A), except we use

the previously created virtual machines instead of the local
BPEL engines. To achieve this, we have to add the suffix
_v for each engine name.

$ betsy ode_v, openesb_v Sequence

C. Show Time Differences (improvements), approx. 10 min

After both executions, we will compare the log files for
both betsy and vbetsy which are named betsy_time. log.
The comparison itself is done by using a side-by-side diff
highlighting the differences in time. In addition, we will
import the time data into excel for a more detailed analysis.
The method of time measurement is the same for both
betsy and vbetsy, thus, these values are comparable in that
regard. The logs contain time durations for all major steps
as well as their aggregates. We will drill down from the
total time to verify that both install and startup time have
reduced dramatically, showing that we have achieved our
research goal. The comparison is done for both BPEL engines,
showing also some differences when having only lightweight
Tomcat as a container (Apache ODE) or being embedded in
an ESB that run on Glassfish v2.2 (BPEL Service Engine in
OpenESB v2.2). We will conclude our demo with a discussion
about other durations, e.g., the test duration, and whether
any effects of the virtualization overhead can be noticed.

	Introduction
	Related Work
	Benchmarking Middleware and BPEL Engines
	Provisioning of Virtual Machines and Appliances
	Testing with Virtual Machines (VMs)

	Status Quo
	VM Testing Extension
	Our Execution Model of Virtual Machines
	Changes in the Test Procedure and Architecture
	Provisioning of BPEL engines
	Issues

	Evaluation
	Limitations
	Conclusion and Future Work
	References
	Demonstration Plan
	Execute Test with betsy (without contribution), approx. 5 min
	Execute Test with vbestsy (with contribution), approx. 3 min
	Show Time Differences (improvements), approx. 10 min

